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Integration of Evolutionary Computation and Machine
Learning
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The classification accuracy of the best evolutionary
and non-evolutionary methods are comparable;
X Evolutionary methods are

Population-based search is easily parallelized; generally much slower than the
non-evolutionary alternatives
These methods can work in the dynamic non- U Possible solutiorparallelization

stationary environment;

Feature selection and learning in one process might X The performance of evolutionary

be combined; algorithms varies significantly for
different problems

From an optimization perspective, learning problems | U Possible solutiorcooperative

are typically large, non-differentiable, noisy, deceptive, algorithms

multimodal, high-dimensional, and highly constrained.

Evolutionary algorithms are an effective tool for such

problems.
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Multi-Objective Genetic Algorithms (MOGASs)

Generateahe initial population
Evaluatecriteriavalues
While(stop-criterion!=true),do:

{

- Estimatefitnessvalues

- Choosehe mostappropriateindividualswith
the mating selectioroperatorbasedon their
fitnessvalues

- Producenew candidatesolutionswith
recombination

- Modify the obtainedindividualswith mutation;

- Composéhe new population(envirenmental
selection);

}
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Multi-Objective Genetic Algorithms

Designing a MOGA, researchers are faced with some issues:

A fitness assignment strategies,

A diversity preservation techniques,
A ways of elitism implementation.

Our task:

V To investigate the effectiveness of MOGAs, which are based

on various heuristic mechanisms
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Pareto-dominance (niching
mechanism) and diversity
estimation (crowding

distance)

Crowding distance

Combination of
the previous
population and the
offspring

Pareto-dominance (with
generating goal vectors)

Nearest neighbour
technique

The archive set and
combination of the
previous population
and the offspring

Pareto-dominance (niching
mechanism) and density
estimation (the distance to
the k-th nearest neighbour in

the objective space)

Nearest neighbour
technique

The archive set
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Some of Test Instances CEC’2009

Test Problem Pareto Set and Front
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Some of Test Instances CEC’2009
) Test Problem Pareto Set and Front
Z ZVJ > min, Pareto(Set: OZS X =1, un
UF2 Jeh (0.3x1 * COS (241tx1 + —)) +
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b
Some of Test Instances CEC’2009
) Test Problem Pareto Set and Front
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Performance Metric

The metric IGD was used to estimate the quality of obtained
Pareto Front approximations:

Yep (v, A)
L

IGD(A,P") =

where P is a set of uniformly distributed points along the Pareto
Front (in the objective space), A is an approximate set to the
Pareto Front, d(v,A) is the minimum Euclidean distance
between v and the points in A.

In short, the IGD(A4, P*) value reflects the average distance from
P*to A.

12
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Experiment Conditions

o Themaximalnumberof function evaluationswas equal to 300 000.

0 The maximal number of solutions in the approximate set produced by
each algorithm for computing the IGD metric was 100 and 150 for two-
objective and three-objective problems respectively.

0 For all of the test instances IGD values were averaged over 25 runs of each
algorithm.
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For all of the algorithms the following settings were defined:

© O

binary tournament selection,
uniform recombination,

Experiment Conditions

0 the mutation probability p.,=1/n, where n is the length of the

chromosome.

O As usual, MOGAs (NSGA-II, SPEA2, and PICEA-g) operated with binary
strings and therefore, we used standardbinary codingto get real values of

variables.

14
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Experimental Results

NSGEAEI PICEAS] S EAZ

1ED) lime(Sec. 1ED) lime(Sec. LE;D) lime (Sec.

4 estiunc:

0.097 196.060 0.107 42.327 0.100 236.677

‘-
-

1
|

0.061 181.520 0.060 84.538 0.0/8 262.089

‘-
-

L
NI

UES 0.191 181.150 0.222 36.781 0.326 237.594
UF4 0.055 182.233 0.0570 75.837 0.083 243.208
UES 0.426 181.509 0.498 33.844 0.518 240.198
URG 0.335 183.085 0.346 34.997 0.319 237.906
U7 0.085 181.039 0.091 75.556 0.125 245.891
Ugs 0.269 190.269 0.191 166.056 0.259 253.813
URS 0.319 191.105 0.290 107.157 0.407 406.996

UEL0 0.626 186.267 0.421 118.744 0.534 290.870
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Discussion

AA t-test (with the significance level p=0.05) was used to compare the
results:

there was no one MOGAwhich demonstratedthe highesteffectivenesgin
the senseof the IGDmetric)for all of the test problems

U Possible solution: Cooperation of genetic algorithms which are based on
different concepts (study NSGA-II, PICEA-g, and SPEA2 )

16
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Cooperative Multi-Objective Genetic Algorithm

Lafll yR Y2RSt X

NSGA-II :
/ \ V is based on parallel work
& Z. of islands;
& S
§% "{.‘,o V has an ability to preserve
/ \\ genetic diversity;

/ V could be applied to
SPEA2 Migration PICEA-g separable problems.

17



£

W

Motivation Background Proposed approach Results and Discussion Conclusion and Future plans ‘

Experiment Conditions

O The computational resources (300 000 function evaluations) were
distributed to all of the components equally.

0 The migration size was 50 (in total each island got 100 points from two
others).

0 The migration interval was 25 generations
0 Again all results were averaged over 25runs.
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NS A SBIG Cooperative
,[,‘:51 \ .\k!,\‘ll I J( !'1,'\‘,’ .\\.I lA.\_ algorlthm Result Of
[UNC. GD [ime GD fime GD. ime: IGD Time t-test
(Sec. (Sec. (Sec.’ (sec.)
Uzl | 0097| 196.06| 0.107| 4233| 0010| 236.68 | 0.068| 5657 | ©OUtPeriommshebes
Us» | 0061| 181.52| 0.060| 8454| 0078| 262.00 | 0056 64.84 | Coresondstotiesst
Uss | o0.191| 18115 0.222| 3678| 0.326| 237.59 | 0.202| 5595 | orespondstotiess!
Up4 | 0055 18223| 0.0570| 75.84| 0.083| 24321 | 0058 6027 | Corespondstotiees!
Ups | 0.426| 18151 0498| 33.84| 0518| 240.20 | 0338 5639 | OUPeroms thebest
Uzs | 0335 18300 0.346| 3500| 0319| 237.91 | 0254 5p01 | OutPeriommsthebes
Us7 | 0085 181.04f 0.091| 7556| 0.125| 24589 | 0084 6027 | OuPeroms thebest
- Corresponds to the
Uss | 0269] 19027 0.191| 166.068] 0259| 25381 | 0.259| 87.24 Rl el
Upe | 0319| 10111 0290 107.16] 0.407| 407.00 | 0.314| 7853 | Coresondstotiees!
Uplo | 0626| 186.27| 0421| 11874 0534| 29087 | 0533| 7512 | COomespondstotiest
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Conclusions and Future Plans

The proposed multi-agent heuristic procedure:

V does not require additional experimentso expose the most appropriate
algorithm for the problem considered,

V might be effectively used instead of any of its component,

V allows us to decrease the computational timeignificantly due to the parallel
work of island model components.

The algorithm developed has already been applied:

U to select informative featuregrom data bases (two criteria were introduced —
the Intra- and Inter-class distances).

U to design neural network modelsaking into account two criteria (the
computational complexity and the accuracy).
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